4月7日,我校罗京佳教授团队与上海人工智能实验室合作共同研发的全球天气中期预报AI大模型“风乌”正式发布。基于多模态和多任务深度学习方法构建,AI大模型“风乌”首次实现在高分辨率上对核心大气变量进行超过10天的有效预报,并在80%的评估指标上超越此前全球公认最好的AI大模型——DeepMind发布的模型GraphCast。此外,“风乌”仅需30秒即可生成未来10天全球高精度预报结果,在效率上大幅优于传统模型。
如何提高天气预报的时效和准确度,一直是业内的重点课题。随着近年来全球气候变化加剧,极端天气频发,各界对天气预报的时效和精度的期待更是与日俱增。在气象气候预报任务中,全球中期天气预报是最重要的预测任务之一,它以预测未来14天内的大气系统状态为目标,不仅是当前广泛使用的集成天气预测系统的基础,也是区域性数值天气预报系统的背景场和边界条件。
随着深度学习技术和框架的不断成熟,人工智能为地球科学等领域带来全新的研究思路。“风乌”提供了一个强大有效的全球中期天气预报的AI框架,其领先性体现在预报精度、预报时效和资源效率三方面。”
在预报精度方面,相比DeepMind的GraphCast,“风乌”的10天预报误差降低10.87%,而相比于传统的物理模型,其误差降低19.4%。在预报时效方面,根据国际常用的标准,z500 ACC大于0.6时气象预报结果具有可用性,可以较好地指导预报员判断未来气象发展形势。此前,全球范围内最好的物理模型HRES在此标准范围内,有效预报时长最大为8.5天,而“风乌”基于再分析数据达到了10.75天。在资源效率方面,现有物理模型往往运行在超级计算机上,而“风乌”AI大模型仅需单GPU便可运行,仅需30秒即可生成未来10天全球高精度预报结果。
“尽管目前市面上有一些产品提供未来15天的气象预报服务,但是10天以上的预报性能还具有很大不确定性,无法达到有效预报的标准。”罗京佳介绍,实践证明,将观测与数值预报和人工智能相结合,可有效提升数值预报的准确性。“‘风乌’首次将全球气象预报的有效性提高到10.75天,具有很大的业务应用价值。”
据了解,“风乌”取名自秦汉时期的“相风铜乌”,是世界上最早的测风设备。天气预报大模型“风乌”不仅承载了中国古人的智慧,也寓意实验室致力于在以气象为代表的AI for Science领域勇于突破、不懈探索。未来,“风乌”AI气象大模型可与传统的物理模型形成互补,凭借其卓越的性能和精度,为生产生活提供更准确、更实用的天气预报信息,助力天气预报数字化,为农林牧渔、航空航海等各行业及公共安全保障提供有力的支持。
运用“风乌”大模型,全球气象有效预报时间首次突破10天
“风乌”多模态网络结构(不同的模态通过不同的编码解码器处理,多模态特征通过跨模态融合模块进行融合)
对不同大气变量的预测结果(ACC是用于衡量预测结果有效性的指标,数值越高,预测结果越有效(红线代表“风乌”,黑线代表GraphCast))